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A NON-LINEAR FINITE ELEMENT ANALYSIS
OF SHALLOW CIRCULAR ARCHES

A. C. WALKER
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Abstract—The large deflection behaviour of a shallow circular arch subjected to a vertical point load is studied
analytically using the Rayleigh—Ritz finite element method. The energy functional employed is a little more
exact than that normally used for shallow arches and the functions used in the finite element method maintain
continuity up to the second derivative of the normal displacement and up to the first derivative of the tangential
displacement.

The non-linear algebraic equations of equilibrium are solved to a high degree of accuracy using a Taylor’s
expansion technique together with the Newton-Raphson method. The stability of the symmetric deformation
path is studied and a detailed analysis is carried out at the point of bifurcation on to an asymmetric deformation
path. The slope of this post-buckled path is computed and is shown to be accurate for deformations well beyond
the point of bifurcation.

INTRODUCTION

MosT shell structures are designed to operate such that the deformations are very small
and the stresses vary linearly with the imposed loads. However, in the design of very thin
shells it is important, for the rational calculations of safety factors, to explore analytically
the non-linear behaviour of the shells. This is particularly necessary if there is any possibility
of a loss of stability occurring along this non-linear path since a linear analysis cannot
provide any indication of such an event.

The Rayleigh—Ritz finite element method [1-4] has been developed recently for use in
the linear analysis of complicated shell structures. In the present paper the method is
extended to non-linear analysis; and a simple shell-type structure, a shallow circular arch
[5-7] is presented as an example of the use of the techniques developed herein. This struc-
ture is chosen because it is probably the simplest one which exhibits the general shell
behaviour phenomena, i.e. non-linear load deflection paths, bifurcation and ‘‘snapping”.

In the analysis developed here the fundamental equilibrium path emerging from the
origin of zero load and zero deflection is determined using a static perturbation method [8].
This approximate path is then corrected at some load value using the Newton-Raphson
technique, this corrected point is now taken as the origin for a further perturbation analysis.
The stability of this fundamental path is determined and points of local maximum and
minimum load are computed using the stability information. For the particular pin-
ended arch considered here a point of bifurcation occurs before the first local maximum
load, and for this a method [9] is outlined for obtaining numerically the value of the post-
buckled slope in the “load—corresponding deflection” plot.

The most common type of loading in practice is dead loading. For a structural element
subject to this loading a local maximum load will give rise to “snapping” and usually
failure of the structure. Similarly the appearance of a bifurcation with a descending post-
buckling slope will, for a dead-loaded structure, lead to excessively large deformations.
Thus in the design process it is necessary to compute not only local maximum loads and
bifurcation loads but also the post-buckled behaviour in the region of the bifurcation load.
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NOTATION
E Young’s modulus
P generalized load, also point load at centre of the arch
0; generalized coordinate
Q. generalized coordinate corresponding to radial deflection at the centre of the arch
R arch radius
U tangential displacement of the arch middle surface
vV total potential energy
w radial deflection of the arch middle surface
b arch width
e generalized displacement coordinate
q; perturbation generalized coordinate
s perturbation parameter
t arch thickness
u non-dimensional form of the tangential displacement of the arch middle surface, u = U/R
w non-dimensional form of the radial displacement of the arch middle surface, w = W/R
« shell parameter, & = (t/R)?/12
B finite element constant, f = m/2¢
£ arch middle surface tangential strain
Ky arch middle surface curvature

half subtended angle
A perturbation generalized load
A, A non-dimensional forms of the generalized load, A = PR*/EI, A = afiA
[% angular variable
14 non-dimensional variable

POTENTIAL ENERGY OF THE SYSTEM

The non-linear strain—displacement relationships used in this analysis are, with

reference to Fig. 1, du 1{dw 2
89=—_W+_ _+u ’ (la)
do 21do
dw
Ko = W+ w. (1b)
P

FI1G. 1. Arch geometry.
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These are taken from Almroth [10] and are a little more general than the corresponding
Donnel shallow shell relationships.
The total potential energy of the system is given by

ERth (% 2 Eth 2
- =n =o df— PR
| 4 3 . g5 dO + 3R Ky Lel,

where P is a generalized load and e is the corresponding displacement vector. The above
equation may be written

ye oV —lfwzde?‘f%xzda— Ale] 2
TERn2), ®V2), TN

= 15(t/R)?, A = PRY/EI
Substituting equation (1) into equation (2) and regrouping terms as

V*u,w,A] = V*{u w, A]l+ Vi[u, wl+ Viu, wl,

where

where V¥ contains only ith powers of u and w, these groups are written as

24 2 42 2
Viu, w,A] = %J; {(g—g—w) +a(ae—;v+w) }d@-—aA[e],

1 2¢ d 2
Vi) =3 (é—w}(%-&-u) a0,
0

Viu, wl = 2J2¢1(dw )4d6.

FINITE ELEMENT FORMULATION

The interval of interest (0 < 0 < 2¢) is divided into m equal intervals and, with reference
to Fig. 2, we may define a new non-dimensional variable £ (0 < ¢ < 1), such that for the
nth interval the potential energy is given by

i
BV 8l o W1 = 3 [ (Bl — w4t + ) e~ e Ga)
0
1 1
BVt wid = 5 [ AP ) B+ ) 0 3b)
0
1 H
BV Sugswad = 5 [ Bwitu® 39
2Jo

where w, = dw,/d¢, etc. and f = m/2¢, A = afA. The total potential energy of the arch
comprises the sum of the potential energy of all the intervals.

il
3 n~f n

\ Pw,

F1G. 2. Finite element configuration.
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The localized Rayleigh functions describing the displacements in the nth interval are
described by [13]

Wa = Quoy(1-108° + 158% —68%)+ Q7 (£ — 687 +88* =38+ Qn_ (32 —38° +3¢84 —1¢&9)
+0,(108° — 158% +68°) + Qn(— 48> + 7 = 3¢°) + Q3™ — & +5¢7), (4a)
Uy = Qi (1 =382+ 28N+ Q5 (€ =28+ 8+ QR3¢% = 28%) + 03— £ + &), (4b)

The functions (4a) maintain continuity in displacement, slope and curvature for w and Q?,
0? and Q* are generalized coordinates specifying the magnitudes of these quantities
respectively. Continuity in displacement and slope of u is specified by the functions in
equation (4b) and the corresponding generalized coordinates are Q* and Q°.

The algebraic equilibrium equations are obtained by substituting equation (4) into
equation (3), integrating, and then differentiating with respect to each coordinate in turn.
The contributions of the individual intervals are added to provide the equilibrium equa-
tions for the whole arch. The integration and differentiation processes are performed
automatically and exactly on a computer thus arriving at the coefficients u;;, etc. which
make up the equilibrium equations,

“iij+uiijij+uijszijQr*‘K[eai] =0 (5)

In equation (5) the dummy suffix summation notation is used, ie. summations take
place for repeated suffices and 0 < i,j, &k, < (Sm—6), where (5m— 6) represents the total
number of coordinates less six prescribed boundary coordinates. Also, e,; = de/8Q; and
since in this analysis the load is considered to be a central point load we have e,; = §,, with

0 i#c

1 ifi=c

[
c defines the generalized coordinate corresponding to the iateral deflection of the centre
of the arch.

SOLUTIONS OF EQUILIBRIUM EQUATIONS

The solution of the non-linear algebraic equilibrium equations presents many diffi-
culties and numerous methods have been devised which may be used in conjunction with
digital computers [11, 12]. Among the more popular of these methods is the Newton-
Raphson iterative procedure, the use of this allows equation (5) to be solved for a particular
value of A, or Q;, to any desirable degree of accuracy. One disadvantage of this method,
however, is that if the initial chosen vector is too far, in the A —Q, space, from the actual
solution then the iterative procedure may not converge, or at best will converge slowly.

The method of solution presented here may be regarded as a means to providing a good
initial starting vector for the Newton—Raphson procedure. However, as will be shown
later, the method may also provide sufficiently accurate solutions if only moderate non-
linear behaviour is to be studied.

Assume that at some values Q* and A* the equilibrium equations are completely satis-
fied, we may now write (see Fig. 3)

Qi =0QF+q;, A=A*+A (6)
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Fi1G. 3. Perturbation axes.
Because of the equilibrium conditions at Q¥, A* the substitution of equation (6) in equa-
tion (5) gives
wq;+ udQF g+ 4,08 + 4,90 + i QF Ok + QT OF + QF quq + 4,08 OF + 9,08 au
+4:9Q" + 9,9+ 4 0, = 0,

which can be reduced to
uliq;+ ufg;qn+ ufiug g+ 4 0, = 0. 7

we now write ¢;, 4 in parametric form,
g =qis); A= A),

where s is some as yet undefined continuous parameter which represents progress along
the desired equilibrium path. Substituting this form into equation (7) we have

ufiq () + ufiq £9)quds) + ufug As)guds)gds) + Als) 6, = 0. (8)
Differentiating equation {8) with respect to s and evaluating at q; = A = 0 gives
ukg{s)+ A(s) 6;c = 0, ©

where ¢; = dq,/0s, etc.
Differentiating equation (8) twice with respect to s and with the results again evaluated
atq; = A =0, then
ufid {s)+ u; pd ()G ils) + Ms) 6 = 0. (10
The parameter s may be identified with any of the path coordinates, in this analysis it is
identified with A. Thus A(s) = 0 and equations (9) and (10) become

ulg Ay = —0 (11
ufig A = —[ufid ADgd ). (12)
From equation (11) we obtain the slopes ¢; and on substitution of these into equation (12)
we may, using the same matrix uf, obtain the curvatures §;. This recursive process is

continued by further differentiation of equation (8) and evaluation at g, = 1 = 0. When

sufficient path derivatives (g;, ;, etc.) have been obtained the path itself may be synthesized
from

Qi = QF +qi A+ 3423+ &G0+ ..., (13a)
A=A*+4 (13b)
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If a value A° is substituted in equation (13) a set of values (Q%, A°) is obtained which only
approximately satisfies equation (5). A more exact solution at A is obtained by using the
Newton—Raphson iterative procedure. Thus, we obtain corrections (dq;),.; at iterative
cycle t from the equations

0q)+: = — [ﬁij]t_ L. [uij(Qj)t + uijk(Qj)t(Qk)l + uijkl(Qj)t(Qk)t(Ql)t +A° Jicl,
(@di+1 = (@) +(39) 4 1-

In equation (14) &;; is formed in the same way as uf; in equation (7) but with values of
(Q,), corresponding to Q. As the values Qf and A° obtained from the Taylor’s expansion
will be close to the exact values, the number of Newton-Raphson iterations is very small.
When the residual error (usually } %" (d¢,)7, ;) falls below a specified value the Taylor’s

expansion technique may be commenced anew.

(14)

STABILITY ANALYSIS

A change of stability along an equilibrium path is marked by the vanishing of the
second variation of the potential energy. In the term of the method of analysis used here
this signifies the determinant of the matrix u¥ of equation (7) becoming zero. The follow-
ing is a procedure which may be used to determine the value of the load, A, at which
a loss of stability occurs and also to determine the behaviour of the structure in the imme-
diate post-buckled region.

At Q; = QF and A = A*, (A* < A,,;,) we assume that equilibrium equation (5) have
been completely satisfied. Hence

U QF +uuQFQF + u;jQFOFQf —A* 6, = 0,

also we assume that a Taylor’s expansion with respect to A has been performed so that
the fundamental path is adequately described by

2
oA = 0F + 0 e A s
= Q¥+ SA+TA2+ ..., (15a)
A=A*+A (15b)
The post buckled path is now described by
0; = QA +q..

Equations (15) are substituted into the energy functions and since the post-buckled path
is in equilibrium the appropriate equilibrium equations are obtained by differentiating
this energy function with respect to q;. After deletion of those terms which collectively
satisfy the equilibrium conditions (equation (5)) for the fundamental path the resulting
equations for the post-buckled path are

u;q;+ uijk[FQ j(/-\)CIk +q jFQk(/—\) + g0+ uijkl[FQ j(K)FQk(K)ql +7Q j(A)‘IkFQz(/_\)
+ quQk(K )FQI(K) + FQj(/_\)‘IkQI + quQk(K)ql + qukFQl(K) + Qj‘IkQI] = 0. (16)
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Once more we write g;, A in parametric form
4i =4qds); A= A@)
Differentiating equation (16) and evaluating at g, = 0 gives
i+ il FQ A+ FOUAN I+ il FQAAY Ok (A + T (A)dk" QUA)
+4;"0AY Q(A)] = 0,

which may be written

[+ ;A A)g; = O, (16a)
where i;; is a function of A. At the bifurcation load we have

|y + i fAcri)| = O,

yielding the critical load, A_,;,. Also, if 5 is identified with one of the generalized coordinates,
say ¢, (in this analysis it was identified with the central slope), then at A = A,,;, equations
(16a) are normalized with respect to g, and the reduced equations may be solved to give
4; (j # s), 4, = 1. Differentiating equation (16) twice with respect to s and evaluating at
q; = 0 yields

il + wiFQ s+ F QW) + uinalFQ;F Qi + QO+ éL‘FQkFQt] + 2’1{uijk[FQ_liqk +F0.4;]
+ “ijkz[FQ}Fquz + FQjFQ;cQI + FQ}‘L‘FQI + FQﬂkFQ; + ‘L‘FQLFQI + ‘L’FQkFQ;]}
+ 2{uld 0] + il Q s + 4,7 Qudi + 4,45 Q1) = 0,
where FQ; = 0°Q,/04 and FQ;,FQ] are evaluated at A_,. The above equation may be
reduced to

[“U + izij(/_\crit)]q;' + 2(/’“7 +u) = 0. (17)

Multiplying each equation by 4; and adding gives

1 _ _'“i‘Ii
A=At ud;

If now /1 is substituted in equation (17) we may solve the reduced equations to give
i;(j # 5), d, = O.

This process is continued by differentiating equation (16) three times with respect to
g, and evaluating at g; = 0. When the necessary substitutions of 4, §;, §; are made we may
obtain 4 and §; (i # s).

To determine the post-buckled behaviour of the structure we may now synthesize the
plot of load vs. corresponding deflection (A—Q,) from the computed path derivatives,
A, q;, etc.

Now

0Q. _ (0Q./0q,)

21~ (04/3q)”

but
Qc = FQC + qc I
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therefore
a_Q_Q — F 5’1 6QC
og, = %og,taq,
Hence,
0QC) ¢ .
= é +(4, f’i s
( 61 /_‘:Acru [ Q (q/ )] K=Kcrn

where from computations §, = 4 = 0 at A = A_;,. Thus as expected [9] and as shown in
Fig. 4 a first order perturbation analysis at the bifurcation load yields no information on
the post-buckling path in the A —Q, plot. The second order perturbation, however, yields

20, B _H),L__ i
O Jachen,  \FQLA+3,

}_\:xcrit

FiG. 4. Bifurcation.

Thus we may construct the immediate post-buckled path using

3]
+ Q.
A=Acue 04 [A>Acr:
Similarly the other post-buckled path coordinates may be determined and, if necessary,
the equilibrium path remote from the buckled region may be determined using the Taylor’s

expansion—Newton-Raphson method described in the previous section.
The local maximum load may be obtained in a similar manner to that outlined above

for the bifurcation load.

Qc = Qc (A— )“c:rit)*

DISCUSSION

The power of the finite element method is best seen when it is applied to problems of
structures having complicated loading and geometry. However, the example presented
here of a circular arch, R/t = 500, ¢ = 10°, loaded centrally by a point load serves perfectly
well to illustrate the application of the general computational method presented above.
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The fundamental path is given in Fig. 5 for a pin-ended arch and in Fig. 6 for an
encastré arch. It may be seen from these that the Taylor’s expansion about the origin gives
satisfactory accuracy well into the non-linear range of deformation. The number of itera-

W =Central deflection/rise (A)

80— Amdx
b d ey
hY
f \+ + Newton-Raphson correction
\\
60— AN
AN
AY
+ \ R/t =500
AY
\ =10)°
ao|- \ =10
AY
A\ -
m=16
< \+
AN
AY
\\
20 Y
\
\
AY
A}
‘\
+
Y
o | vl |
0-2 o4 06 \ 08 10
W, \
+
A
Y
\
~20kH

F1G. 5. Arch fundamental path.

W, =Central deflection/rise (A}

sof- [/ T
N\, ]
\\ 1

\ i R/=500
\, !
+ N\ / =|0°
60} Y ! ¢
N\ t m=16
A Y
\ )
\ !
< \ ]
+ /
40, . / + Newton-Raphson
AY / H
kS / corrections
RN
20
1 | ] | I
o 02 04 06 08 10
We

Fi1G. 6. Encastré arch fundamental path.

tions required by the Newton—Raphson method was never more than two, the central
deflection was taken as the prescribed generalized coordinate for this part of the computa-
tion. In Table 1 convergence cf the features of the results with increasing number of
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TABLE 1
m A ax Acri OA/ow,
6 7892 66:63 —119-2
8 76:72 66:22 —1154
12 7627 66-09 —1144
16 76-21 66-08 —1131

elements is presented. It is evident from these that even the coarsest interval provides suffi-
cient accuracy for practical design calculations and as is seen from Fig. 7 the slope of the
post-buckling path determines accurately the behaviour of the structure at load values
remote from the buckling load.

W.= Central deflection/rise (A)

BOT—
// Fundamental symetric path

A &

e
60l + Newton-Raphson corrections
+
+
< a0 /Exucf assymetric  path
\ R/t =500
¢ =10°

Y
20
+ Assymetric path using
wpe at bifurcation
{ | | | |
o] o2 04 06 08 1-0

We

Fi1G. 7. Pinned arch bifurcation and post-buckled path.
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A6cTpakT—Hccnenyercss aHanuTH4eCKH noBeAeHue npu Oonbuimx u3rubax Kpyrioit, nogorodt apku
HOOBEPKEHHOW COCPENOTOUYCHHOM, BEPTUKAJIBHOM HArpy3ke, UCNONb3Ys MeTod Panes—Putua kxoHevHoro
aneMeHTa. [IpuMensaercs 6osee TOuHO QYHKLIHOHAN FHEPTUM, YEM HOPMAJIBHO 3TO OEJIACTCA IJIS MOJIOTHX
apok. OYHKUMHK, UCMOJIb3OBAHHBIE B METO/IE KOHEYHOTO 1EMEHTA, OCTAIOTCH HEMPEPLIBHBIMH [0 BTOPOii
MPOU3BOAHON HOPMABHOI'O MEPEMELUEHUS BK/HOUUTEILHO U OO MEPBOH MNPOKW3IBOAHON TAHTEHUMANBHOTO
MEPEMELLECHHUS, TAKXKE, BKIIIOYUTENBHO. Pelnatotcs HenuHelHble anrebpanyueckue ypaBHEHHS PABHOBECHS C
GoNbLIOH CTEMEHHIO TOYHOCTH, MCMOJBL3YA METOA paiznoxenus Teisopa B Mecte ¢ meToaom HproToHa-
Padcona. Mccneayercs yCcTOHYHMBOCTD acCUMMETPUYECKOil BeTBU nedopmaunun. IIpuBoaMTCs aeTasibHBIM
aHa/IM3 PU TovukKe OudypKalK B HANIPABIEHMH HECHMMETPHYECKOH BeTBH dedopmaunu. Peinaercs HaKIOH
3TOM BETBHU I10CJIE BbINYYHBAHUA M MOKA3bIBAETCA, YTO OHA CMpaBeauBa A5 AedhopMaLMil HA HEKOTOPOM
paccTosHuM OT TOYKM Oudypxanuu.



